Optical and Geometric Properties of Free Silica Nanoparticles Studied by Small-Angle X-Ray Scattering

Author:

Langer Burkhard1,Raschpichler Christopher1,Gruner Mathias1,Antonsson Egill1,Goroncy Christian1,Graf Christina1,Rühl Eckart1

Affiliation:

1. Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany

Abstract

Abstract Elastic small-angle X-ray scattering (SAXS) of free silica (SiO2) nanoparticles is reported (d = 100–180 nm). The particles were prepared by a modified Stöber synthesis in narrow size distributions with controlled surface roughness and functionalization. Angle-resolved small-angle X-ray scattering patterns are shown to be sensitive to these changes in particle properties. It is reported that there is an exponential decrease in scattered X-ray intensity towards larger scattering angles as well as distinct oscillations, which is fully explained by Mie theory. Small-angle X-ray scattering of mesoporous nanoparticles with rough surfaces is compared to that of microporous nanoparticles with smooth surfaces, revealing distinct differences that are rationalized by diffuse scattering from nanoparticle pores in addition to the dominating contribution of Mie scattering. Furthermore, results from small-angle X-ray scattering experiments on functionalized silica nanoparticles are presented, where the incorporation of the dye fluorescein isothiocyanate is found to cause changes in the optical properties of the nanoparticles, as compared to non-functionalized samples. Small, but distinct deviations in particle size derived from electron microscopy and from small-angle X-ray scattering are observed. These are rationalized by particle shrinking occurring in electron microscopy as well as slight changes in optical properties of the nanoparticle samples.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3