Ab initio Variational Transition State Theory and Master Equation Study of the Reaction (OH)3SiOCH2 + CH3 ⇌ (OH)3SiOC2H5

Author:

Nurkowski Daniel1,Klippenstein Stephen J.2,Georgievskii Yuri2,Verdicchio Marco2,Jasper Ahren W.3,Akroyd Jethro1,Mosbach Sebastian1,Kraft Markus

Affiliation:

1. Department of Chemical Engineering and Biotechnology, University of Cambridge New Museums Site, Pembroke Street, CB2 3RA, Cambridge, UK

2. Chemical Sciences and Engineering Division, Argonne National Laboratory, IL 60439, US

3. Sandia National Laboratories, Combustion Research Facility, Livermore, CA 94551-0969, US

Abstract

Abstract In this paper we use variable reaction coordinate variational transition state theory (VRC-TST) to calculate the reaction rate constants for the two reactions, R1: (OH)3SiOCH2 + CH3 ⇌ (OH)3SiOC2H5, and R2: CH2OH + CH3 ⇌ C2H5OH. The first reaction is an important channel during the thermal decomposition of tetraethoxysilane (TEOS), and its rate coefficient is the main focus of this work. The second reaction is analogous to the first and is used as a basis for comparison. The interaction energies are obtained on-the-fly at the CASPT2(2e,2o)/cc-pVDZ level of theory. A one-dimensional correction to the sampled energies was introduced to account for the energetic effects of geometry relaxation along the reaction path. The computed, high-pressure rate coefficients were calculated to be, R1: k 1 = 2.406 × 10−10 T −0.301 exp (− 271.4/T) cm3 molecule 1 s 1 and R2: k 2 = 1.316 × 10−10 T −0.189 exp (− 256.5/T) cm3 molecule 1 s 1. These rates differ from each other by only 10% – 30% over the temperature range 300–2000 K. A comparison of the computed rates with experimental data shows good agreement and an improvement over previous results. The pressure dependency of the reaction R1 is explored by solving a master equation using helium as a bath gas. The results obtained show that the reaction is only weakly pressure dependent over the temperature range 300–1700 K, with the predicted rate constant being within 50% of its high-pressure limit at atmospheric pressure.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3