Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites

Author:

Zhu Jian1,Watts Douglas1,Kotov Nicholas A.1234

Affiliation:

1. Department of Chemical Engineering , University of Michigan , Ann Arbor 48109 , USA

2. Department of Materials Science and Engineering , University of Michigan , Ann Arbor 48109 , USA

3. Department of Biomedical Engineering , University of Michigan , Ann Arbor 48109 , USA

4. BioInterface Institute , University of Michigan , Ann Arbor 48109 , USA

Abstract

Abstract Layer-by-layer (LBL) assembly produces nanocomposites with distinctively high volume fractions of nanomaterials and nanometer scale controlled uniformity. Although deposition of one nanometer scale layer at a time leads to high performance composites, this deposition mode is also associated with the slow multilayer build-up. Exponential LBL, spin coating, turbo-LBL and other methods tremendously accelerate the multilayer build-up but often yield lower, strength, toughness, conductivity, etc. Here, we introduce gelation assisted layer-by-layer (gaLBL) deposition taking advantage of a repeating cycle of hydrogel formation and subsequent polymer infiltration demonstrated using aramid nanofiber (ANF) and epoxy resin (EPX) as deposition partners. Utilization of ANF gels increases the thickness of each deposited layer from 1–10 nm to 30–300 nm while retaining fine control of thickness in each layer, high volume fraction, and uniformity. While increasing the speed of the deposition, the high density of interfaces associated with nanofiber gels helps retain high mechanical properties. The ANF/EPX multilayer composites revealed a rare combination of properties that was unavailable in traditional aramid-based and other composites, namely, high ultimate strength of 505±47 MPa, high toughness of 50.1±9.8 MJ/m3, and high transparency. Interestingly, the composite also displayed close-to-zero thermal expansion. The constellation of these materials properties is unique both for quasi-anisotropic composites and unidirectional materials with nanofiber alignment. gaLBL demonstrates the capability to resolve the fundamental challenge between high-performance and scalability. The gelation-assisted layered deposition can be extended to other functional components including nanoparticle gels.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3