Evaluation of Climate Change Effects on Rain Rate Distribution in Malaysia using Hydro-Estimator for 5G and Microwave Links

Author:

Basarudin Hafiz,Mohd Yunus Noor HidayahORCID,Ramli Aizat Faiz,Mansor Zuhanis,Sali Aduwati,Gan Hong Seng,Abu Mohd Azlan

Abstract

Wireless transmissions at more than 10GHz can experience signal fading caused by the presence of hydrometeor particles in the atmosphere. Among these hydrometeors, rain is the largest contributor to the fading mechanism. Rain fade can be predicted or calculated using rain rate measurements. With climate change affecting the world due to the rise of carbon dioxide in the air, it is expected to affect the distribution of rainfall, which ultimately affects rain fade. This paper investigates the effects of climate change on rain rate distribution in Malaysia. Ten years of Hydro-Estimator data containing rainfall rates in Peninsular Malaysia and the Sabah and Sarawak region from 2011 to 2020 were collected and analyzed. Using the linear regression method, a small increment of rain rate distribution at 0.01% annual probability was detected for all regions, indicating a climate change effect on the rain rate distribution. For Peninsular Malaysia, the rate was 0.2356mm/hr per year while for the Sabah and Sarawak region, it was 0.4046mm/hr per year. An increase in the rain rate would increase the rain fade, causing signal losses and distortions in high-frequency wireless communication signals. The evaluation of climate change effects on the rain rate and rain fade distributions can help in developing a long-term prediction of the signal performance in 5G systems and high-frequency radio link frequencies due to hydrometeors.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classified Volatile Organic Compound Detection using Data Classification Algorithms;Engineering, Technology & Applied Science Research;2024-02-08

2. Effective Feature Prediction Models for Student Performance;Engineering, Technology & Applied Science Research;2023-10-13

3. Preliminary Verification of Hydro-Estimator for Rainfall Estimation: A Comparison with Rain Gauge Data for Microwave Link Applications in Malaysia;2023 International Conference on Engineering Technology and Technopreneurship (ICE2T);2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3