Effective Feature Prediction Models for Student Performance

Author:

Alsubhi Bashayer,Alharbi Basma,Aljojo Nahla,Banjar Ameen,Tashkandi Araek,Alghoson Abdullah,Al-Tirawi Anas

Abstract

The ability to accurately predict how students will perform has a significant impact on the teaching and learning process, as it can inform the instructor to devote extra attention to a particular student or group of students, which in turn prevents those students from failing a certain course. When it comes to educational data mining, the accuracy and explainability of predictions are of equal importance. Accuracy refers to the degree to which the predicted value was accurate, and explainability refers to the degree to which the predicted value could be understood. This study used machine learning to predict the features that best contribute to the performance of a student, using a dataset collected from a public university in Jeddah, Saudi Arabia. Experimental analysis was carried out with Black-Box (BB) and White-Box (WB) machine-learning classification models. In BB classification models, a decision (or class) is often predicted with limited explainability on why this decision was made, while in WB classification models decisions made are fully interpretable to the stakeholders. The results showed that these BB models performed similarly in terms of accuracy and recall whether the classifiers attempted to predict an A or an F grade. When comparing the classifiers' accuracy in making predictions on B grade, the Support Vector Machine (SVM) was found to be superior to Naïve Bayes (NB). However, the recall results were quite similar except for the K-Nearest Neighbor (KNN) classifier. When predicting grades C and D, RF had the best accuracy and NB the worst. RF had the best recall when predicting a C grade, while NB had the lowest. When predicting a D grade, SVM had the best recall performance, while NB had the lowest.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3