Prediction of the Adhesion Strength of Coating in Plasma Spray Deposition

Author:

Vu Duong

Abstract

The goal of this work is to validate the existing plasma spray mathematical models, using a calculation method and the comparison with experimental data, in order to determine their validity. A preliminary evaluation of the adhesion based on the velocity and temperature of the particles is useful to be calculated by using the mathematical model. Given the thermal-physical properties and chemical composition of a Fe-based amorphous X-5 powder, a modified model was suggested. For comparison, a series of experiments using plasma spraying of the X-5 powder were conducted. The significance of the current study consists of the model validation by using the data of the plasma spraying of the Fe-based amorphous material as a potential substitution for saving production costs by using ordinary air as the plasma generation gas. The findings show the discrepancy between the models and the experimental results. The prediction of adhesion using the mathematical models does not cover essential parameters such as the enthalpy of the particle stream. It is necessary to improve the mathematical models, including the modified one, based on the experiment results, with different pairs of particles and substrate materials. The proposed formula is applicable during the preliminary design of the spray process and the development of a new torch construction.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of Technological Parameters when Plasma Nitriding the Gear Working Surface;Engineering, Technology & Applied Science Research;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3