Abstract
The goal of this work is to validate the existing plasma spray mathematical models, using a calculation method and the comparison with experimental data, in order to determine their validity. A preliminary evaluation of the adhesion based on the velocity and temperature of the particles is useful to be calculated by using the mathematical model. Given the thermal-physical properties and chemical composition of a Fe-based amorphous X-5 powder, a modified model was suggested. For comparison, a series of experiments using plasma spraying of the X-5 powder were conducted. The significance of the current study consists of the model validation by using the data of the plasma spraying of the Fe-based amorphous material as a potential substitution for saving production costs by using ordinary air as the plasma generation gas. The findings show the discrepancy between the models and the experimental results. The prediction of adhesion using the mathematical models does not cover essential parameters such as the enthalpy of the particle stream. It is necessary to improve the mathematical models, including the modified one, based on the experiment results, with different pairs of particles and substrate materials. The proposed formula is applicable during the preliminary design of the spray process and the development of a new torch construction.
Publisher
Engineering, Technology & Applied Science Research
Reference16 articles.
1. H. K. Le, "A Study on the Influence of Plasma Nitriding Technology Parameters on the Working Surface Deformation of Hypoid Gears," Engineering, Technology & Applied Science Research, vol. 12, no. 6, pp. 9760–9765, Dec. 2022.
2. Y. Ichikawa and K. Shinoda, "Current Status and Challenges for Unified Understanding of Bonding Mechanism in Solid Particle Deposition Process," Materials Transactions, vol. 62, no. 6, pp. 691–702, 2021.
3. S. Yin, X. Wang, W. Li, H. Liao, and H. Jie, "Deformation behavior of the oxide film on the surface of cold sprayed powder particle," Applied Surface Science, vol. 259, pp. 294–300, Oct. 2012.
4. G. R. Johnson and W. H. Cook, "A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures," in Proceedings 7th International Symposium on Ballistics, 1983, pp. 541–547.
5. M. Murugesan and D. W. Jung, "Johnson Cook Material and Failure Model Parameters Estimation of AISI-1045 Medium Carbon Steel for Metal Forming Applications," Materials, vol. 12, no. 4, Jan. 2019, Art. no. 609.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献