Author:
Da Silva Jr. A. G.,Martins J. A.,Romão E. C.
Abstract
In this paper, numerical simulations via regressive and central finite differences of different orders were produced using Fortran code and a one-dimensional non-linear wave equation was solved. The errors obtained during simulations, when using different refinements, were listed and compared in order to determine the validity of the simulation, which demonstrates that the proposed formulation presents satisfactory results.
Publisher
Engineering, Technology & Applied Science Research
Reference16 articles.
1. E. C. Romao and L. H. P. de Assis, "Numerical Simulation of 1D Unsteady Heat Conduction-Convection in Spherical and Cylindrical Coordinates by Fourth-Order FDM," Engineering, Technology & Applied Science Research, vol. 8, no. 1, pp. 2389–2392, Feb. 2018.
2. L. Saidi, S. Mekroussi, S. Kherris, D. Zebbar, and B. Mébarki, "A Numerical Investigation of the Free Flow in a Square Porous Cavity with Non-Uniform Heating on the Lower Wall," Engineering, Technology & Applied Science Research, vol. 12, no. 1, pp. 7982–7987, Feb. 2022.
3. S. Bekkouche and M. Kadja, "Numerical Analysis of Density-Driven Reactive Flows in Hele-Shaw Cell Geometry," Engineering, Technology & Applied Science Research, vol. 10, no. 2, pp. 5434–5440, Apr. 2020.
4. M. D. de Campos, E. Claro Romão, and L. F. M. de Moura, "A finite-difference method of high-order accuracy for the solution of transient nonlinear diffusive–convective problem in three dimensions," Case Studies in Thermal Engineering, vol. 3, pp. 43–50, Jul. 2014.
5. M. Campos and E. Romão, "A High-Order Finite-Difference Scheme with a Linearization Technique for Solving of Three-Dimensional Burgers Equation," Computer Modeling in Engineering and Sciences, vol. 103, no. 3, pp. 139–154, Dec. 2014.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献