Numerical Analysis of Density-Driven Reactive Flows in Hele-Shaw Cell Geometry

Author:

Bekkouche S.,Kadja M.

Abstract

In this paper, a two-dimensional numerical simulation of the unsteady state of a two non-isothermal immiscible liquids layer system filling a reactor formed by two closely spaced parallel glass sheets, which is called an Hele-Shaw cell, vertically oriented, with an expected neutralization reaction between an acid and a base in the lower layer, under the action of gravity, is studied. Attention is given on the general behavior of the complete temporal pattern evolution (velocity, temperature, and concentration profiles) and the identification of the exothermic reaction’s role in giving birth to chemo-hydrodynamic patterns that occur because of concentration gradients. The effects of gravity and changes in initial acid and base concentrations on the formed patterns were studied. The mathematical model governing the phenomenon was solved numerically by the CFD software package COMSOL Multiphysics, with the finite element method and a comparison with the experimental data was made. The results show that this numerical tool is promising for the understanding of the reactive instabilities happening when two immiscible fluids come into contact.

Publisher

Engineering, Technology & Applied Science Research

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3