Multi-Layer Perceptron Neural Network Model Development for Chili Pepper Disease Diagnosis Using Filter and Wrapper Feature Selection Methods

Author:

Nuanmeesri S.ORCID,Sriurai W.

Abstract

The goal of the current study is to develop a diagnosis model for chili pepper disease diagnosis by applying filter and wrapper feature selection methods as well as a Multi-Layer Perceptron Neural Network (MLPNN). The data used for developing the model include 1) types, 2) causative agents, 3) areas of infection, 4) growth stages of infection, 5) conditions, 6) symptoms, and 7) 14 types of chili pepper diseases. These datasets were applied to the 3 feature selection techniques, including information gain, gain ratio, and wrapper. After selecting the key features, the selected datasets were utilized to develop the diagnosis model towards the application of MLPNN. According to the model’s effectiveness evaluation results, estimated by 10-fold cross-validation, it can be seen that the diagnosis model developed by applying the wrapper method along with MLPNN provided the highest level of effectiveness, with an accuracy of 98.91%, precision of 98.92%, and recall of 98.89%. The findings showed that the developed model is applicable.

Publisher

Engineering, Technology & Applied Science Research

Reference20 articles.

1. K. Lertrat, "Production, planting, processing, marketing, and chili pepper products in Thailand," Research Community, vol. 73, pp. 15–20, May 2007.

2. S. Potghan, R. Rajamenakshi, and A. Bhise, "Multi-Layer Perceptron Based Lung Tumor Classification," in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, Mar. 2018, pp. 499–502.

3. K. Subhadra and B. Vikas, "Neural Network Based Intelligent System for Predicting Heart Disease," International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 5, pp. 484–487, 2019.

4. K. Sutha and J. J. Tamilselvi, "A review of feature selection algorithms for data mining techniques" International Journal on Computer Science and Engineering, vol. 7, no. 6, pp. 63–67, Jun. 2015.

5. P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining, 2nd ed. New York, USA: Pearson Education, 2019.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Pepper Leaf Diseases Based on TPSAO-AMWNet;Plants;2024-06-06

2. Adaptive Method for Feature Selection in the Machine Learning Context;Engineering, Technology & Applied Science Research;2024-06-01

3. Chronic Obstructive Pulmonary Disease Diagnosis with Bagging Ensemble Learning and ANN Classifiers;Engineering, Technology & Applied Science Research;2024-06-01

4. An Innovative Approach to Cardiovascular Disease Prediction: A Hybrid Deep Learning Model;Engineering, Technology & Applied Science Research;2023-12-05

5. The Application of LQG Balanced Truncation Algorithm to the Digital Filter Design Problem;Engineering, Technology & Applied Science Research;2022-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3