An Innovative Approach to Cardiovascular Disease Prediction: A Hybrid Deep Learning Model

Author:

Dhaka Priyanka,Sehrawat Ruchi,Bhutani Priyanka

Abstract

The increasing prevalence of cardiovascular disorders has created an imperative need for accurate diagnoses. Despite the emergence of numerous techniques for disease classification and secure data transmission, a prevailing shortcoming is the lack of precision in decision-making. This study aimed to address this critical issue by introducing an innovative disease prediction model that uses a hybrid classifier. The proposed hybrid classifier combined deep Bidirectional Long-Short-Term Memory (deep Bi LSTM) and deep Convolutional Neural Network (deep CNN).To further improve its performance, the proposed approach employed hybridized swarm optimization to fine-tune fusion parameters and optimize the learning model for enhanced accuracy. This study focused on heart disease as its central concern, strengthening data security through the implementation of Diffi-Huffman based on Elliptic Curve Cryptography (ECC) during data transmission. The resulting automatic disease prediction model adopted the hybrid deep classifier, which was born from the amalgamation of two components: the interactive hunt-deep CNN classifier and the WoM-deep Bi LSTM. The proposed hybrid learning model achieved impressive accuracy, F-measure, sensitivity, and specificity of 97.716%, 97.848%, 98.021%, and 97.807%, respectively, marking a significant advance in the realm of cardiovascular disease prediction.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Metaheuristic Approach of predicting the Dynamic Modulus in Asphalt Concrete;Engineering, Technology & Applied Science Research;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3