A Second Order Arnoldi Method with Stopping Criterion and Reduced Order Selection for Reducing Second Order Systems
-
Published:2022-06-06
Issue:3
Volume:12
Page:8712-8717
-
ISSN:1792-8036
-
Container-title:Engineering, Technology & Applied Science Research
-
language:
-
Short-container-title:Eng. Technol. Appl. Sci. Res.
Author:
Tamri A.,Mitiche L.,Adamou-Mitiche A. B. H.
Abstract
This paper introduces a new algorithm for reducing large dimensional second-order dynamic systems through the Second Order Arnold Reduction (SOAR) procedure, with a stopping criterion to select an acceptable good order for the reduced model based on a new coefficient called the Numerical-Rank Performance Coefficient (NRPC), for efficient early termination and automatic optimal order selection of the reduced model. The key idea of this method is to calculate the NRPC coefficient for each iteration of the SOAR algorithm and measure the dynamic evolution information of the original system, which is added to each vector of the Krylov subspace generated by the SOAR algorithm. When the dynamical tolerance condition is verified, the iterative procedure of the algorithm stops. Three benchmark models were used as numerical examples to check the effectiveness and simplicity of the proposed algorithm.
Publisher
Engineering, Technology & Applied Science Research
Reference21 articles.
1. C.-C. Chu, H.-C. Tsai, and M.-H. Lai, "Structure preserving model-order reductions of MIMO second-order systems using Arnoldi methods," Mathematical and Computer Modelling, vol. 51, no. 7, pp. 956–973, Apr. 2010. 2. Z. Bai and Y. Su, "Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method," SIAM Journal on Scientific Computing, vol. 26, no. 5, pp. 1692–1709, Jan. 2005. 3. Y. Su, J. Wang, X. Zeng, Z. Bai, C. Chiang, and D. Zhou, "SAPOR: second-order Arnoldi method for passive order reduction of RCS circuits," in IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., San Jose, CA, USA, Aug. 2004, pp. 74–79. 4. Z. R. Labidi, H. Schulte, and A. Mami, "A Model-Based Approach of DC-DC Converters Dedicated to Controller Design Applications for Photovoltaic Generators," Engineering, Technology & Applied Science Research, vol. 9, no. 4, pp. 4371–4376, Aug. 2019. 5. R. Srinivasan Puri, "Krylov Subspace Based Direct Projection Techniques for Low Frequency, Fully Coupled, Structural Acoustic Analysis and Optimization," Ph.D. dissertation, Oxford Brookes University, 2009.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|