A Second Order Arnoldi Method with Stopping Criterion and Reduced Order Selection for Reducing Second Order Systems

Author:

Tamri A.,Mitiche L.,Adamou-Mitiche A. B. H.

Abstract

This paper introduces a new algorithm for reducing large dimensional second-order dynamic systems through the Second Order Arnold Reduction (SOAR) procedure, with a stopping criterion to select an acceptable good order for the reduced model based on a new coefficient called the Numerical-Rank Performance Coefficient (NRPC), for efficient early termination and automatic optimal order selection of the reduced model. The key idea of this method is to calculate the NRPC coefficient for each iteration of the SOAR algorithm and measure the dynamic evolution information of the original system, which is added to each vector of the Krylov subspace generated by the SOAR algorithm. When the dynamical tolerance condition is verified, the iterative procedure of the algorithm stops. Three benchmark models were used as numerical examples to check the effectiveness and simplicity of the proposed algorithm.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Reference21 articles.

1. C.-C. Chu, H.-C. Tsai, and M.-H. Lai, "Structure preserving model-order reductions of MIMO second-order systems using Arnoldi methods," Mathematical and Computer Modelling, vol. 51, no. 7, pp. 956–973, Apr. 2010.

2. Z. Bai and Y. Su, "Dimension Reduction of Large-Scale Second-Order Dynamical Systems via a Second-Order Arnoldi Method," SIAM Journal on Scientific Computing, vol. 26, no. 5, pp. 1692–1709, Jan. 2005.

3. Y. Su, J. Wang, X. Zeng, Z. Bai, C. Chiang, and D. Zhou, "SAPOR: second-order Arnoldi method for passive order reduction of RCS circuits," in IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., San Jose, CA, USA, Aug. 2004, pp. 74–79.

4. Z. R. Labidi, H. Schulte, and A. Mami, "A Model-Based Approach of DC-DC Converters Dedicated to Controller Design Applications for Photovoltaic Generators," Engineering, Technology & Applied Science Research, vol. 9, no. 4, pp. 4371–4376, Aug. 2019.

5. R. Srinivasan Puri, "Krylov Subspace Based Direct Projection Techniques for Low Frequency, Fully Coupled, Structural Acoustic Analysis and Optimization," Ph.D. dissertation, Oxford Brookes University, 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Stepwise Method to Find the Most Influencing Feature to the Cell Nuclei of a Breast Mass;Highlights in Science, Engineering and Technology;2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3