Model order reduction, a novel method using krylov sub-spaces and genetic algorithm

Author:

Tamri Abdesselam,Adamou-Mitiche Amel Baha Houda,Mitiche Lahcène

Abstract

Model Order Reduction (MOR) of complex and large systems in Electrical engineering, continuous to be an attractive field for Engineers and Scientists over the last few decades, this complexity of models makes the control designs and simulation using Computer Aided Design (CAD) more and more difficult and consuming a lot of time. There for, accurate, robust and fast algorithms for simulation are needed. The goal of MOR is to replace the original system by an appropriate reduced system which preserves the main properties of the original one such that stability and passivity. Several analytical MOR techniques have been proposed in the literature over the past few decades, to approximate high order linear dynamic systems like Krylov sub-space techniques and SVD (Singular Value Decomposition) techniques. However, most of these techniques lead to computationally demanding, time consuming, iterative procedures that usually result in non-robustly stable models with poor frequency response resemblance to the original high order model in some frequency ranges. Recently a set of new techniques based on Artificial Intelligence (AI) were proposed in [1] for MOR. This article considers the problem of model order reduction of Linear Time In varying (LTI) systems. It is described by first and second order ordinary differential equations model. A tow steps method for model order reduction of LTI systems is proposed here, which combined features of an analytic technique (Krylov approach) and an AI technique (Genetic Algorithm). In the first step, the size of the original model is reduced to an intermediate order, using an analytical technique based on Krylov sub-spaces. In the final step of the reduction process, an AI approach based on Genetic Algorithm (GA) is applied to obtain an optimized nominal model.

Publisher

South Florida Publishing LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3