Abstract
With the advances in technology, computer vision applications using deep learning methods like Convolutional Neural Networks (CNNs) have been extensively applied in agriculture. Deploying these CNN models on mobile phones is beneficial in making them accessible to everyone, especially farmers and agricultural extension officers. This paper aims to automate the detection of damages caused by a devastating tomato pest known as Tuta Absoluta. To accomplish this objective, a CNN segmentation model trained on a tomato leaf image dataset is deployed on a smartphone application for early and real-time diagnosis of the pest and effective management at early tomato growth stages. The application can precisely detect and segment the shapes of Tuta Absoluta-infected areas on tomato leaves with a minimum confidence of 70% in 5 seconds only.
Publisher
Engineering, Technology & Applied Science Research
Reference45 articles.
1. Annual Agriculture Sample Survey Crop and Livestock Report. Tanzania: Ministry of Agriculture, 2017.
2. S. R. Rupanagudi, B. S. Ranjani, P. Nagaraj, V. G. Bhat, and T. G, "A novel cloud computing based smart farming system for early detection of borer insects in tomatoes," in International Conference on Communication, Information & Computing Technology, Mumbai, India, Jan. 2015, pp. 1–6.
3. V. Mutayoba and D. Ngaruko, "Assessing Tomato Farming and Marketing Among Smallholders in High Potential Agricultural Areas of Tanzania," International Journal of Economics, Commerce and Management, vol. 6, no. 8, pp. 577–590, 2018.
4. A. H. R. Gonring, A. H. Walerius, M. M. Picanco, L. Bacci, J. C. Martins, and M. C. Picanco, "Feasible sampling plan for Tuta absoluta egg densities evaluation in commercial field tomato," Crop Protection, vol. 136, Oct. 2020, Art. no. 105239.
5. N. Desneux et al., "Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control," Journal of Pest Science, vol. 83, no. 3, pp. 197–215, Aug. 2010.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献