Improved Tomato Disease Detection with YOLOv5 and YOLOv8

Author:

Ahmed Rabie,Abd-Elkawy Eman H.

Abstract

This study delves into the application of deep learning for precise tomato disease detection, focusing on four crucial categories: healthy, blossom end rot, splitting rotation, and sun-scaled rotation. The performance of two lightweight object detection models, namely YOLOv5l and YOLOv8l, was compared on a custom tomato disease dataset. Initially, both models were trained without data augmentation to establish a baseline. Subsequently, diverse data augmentation techniques were obtained from Roboflow to significantly expand and enrich the dataset content. These techniques aimed to enhance the models' robustness to variations in lighting, pose, and background conditions. Following data augmentation, the YOLOv5l and YOLOv8l models were re-trained and their performance across all disease categories was meticulously analyzed. After data augmentation, a significant improvement in accuracy was observed for both models, highlighting its effectiveness in bolstering the models' ability to accurately detect tomato diseases. YOLOv8l consistently achieved slightly higher accuracy compared to YOLOv5l, particularly when excluding background images from the evaluation.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3