Real Time Speech Recognition based on PWP Thresholding and MFCC using SVM

Author:

Helali W.,Hajaiej Ζ.,Cherif A.

Abstract

The real-time performance of Automatic Speech Recognition (ASR) is a big challenge and needs high computing capability and exhaustive memory consumption. Getting a robust performance against inevitable various difficult situations such as speaker variations, accents, and noise is a tedious task. It’s crucial to expand new and efficient approaches for speech signal extraction features and pre-processing. In order to fix the high dependency issue related to processing succeeding steps in ARS and enhance the extracted features’ quality, noise robustness can be solved within the ARS extraction block feature, removing implicitly the need for further additional specific compensation parameters or data collection. This paper proposes a new robust acoustic extraction approach development based on a hybrid technique consisting of Perceptual Wavelet Packet (PWP) and Mel Frequency Cepstral Coefficients (MFCCs). The proposed system was implemented on a Rasberry Pi board and its performance was checked in a clean environment, reaching 99% average accuracy. The recognition rate was improved (from 80% to 99%) for the majority of Signal-to-Noise Ratios (SNRs) under real noisy conditions for positive SNRs and considerably improved results especially for negative SNRs.

Publisher

Engineering, Technology & Applied Science Research

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An automated system to distinguish between Corona and Viral Pneumonia chest diseases based on image processing techniques;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-09-30

2. A Novel Approach on Speaker Gender Identification and Verification Using DWT First Level Energy and Zero Crossing;Engineering, Technology & Applied Science Research;2022-12-15

3. Efficient multimodal cancelable biometric system based on steganography and cryptography;Iran Journal of Computer Science;2022-12-03

4. Environmental Noise Reduction based on Deep Denoising Autoencoder;Engineering, Technology & Applied Science Research;2022-12-01

5. Spectral Features based Robust Speech Spoofing Detection System;2022 International Conference on Advances in Computing, Communication and Materials (ICACCM);2022-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3