UAV Tomographic Synthetic Aperture Radar for Landmine Detection

Author:

Almutiry M.

Abstract

The development of the Unmanned Aerial Vehicle (UAV) and communication systems contributed to the availability of more applications using UAVs in military and civilians purposes. Anti-personnel landmines deployed by militia groups in conflict zones are a life threat for civilians and need cautious handling while removing. The UAV Tomographic Synthetic Aperture Radar (TSAR) can reconstruct three-dimension images of the investigation domain to prescreen nonmetallic landmines. A nonmetallic landmine cannot be detected using conventional ground penetrating radars when the scattering field is undetected due to the dielectric permittivity. In this paper, imaging the underground for detecting landmine using TSAR is proposed. The TSAR has the capability of prosing the data in discrete mode regardless of the altitude of UAV’s radar. A landmine is always buried less than a feet depth. L-band frequency is used to provide high resolution and to penetrate deep in dry soil. More than one UAVs are used to multistatic scan the investigation space. The geometric diversity of multistatic distribution of the sensors will provide more information about the buried nonmetallic landmines, certain features, and their location. The data collected from the sensors will align with the geolocation data obtained from the UAV’s system for processing. Dynamic flying can be used to predict the electromagnetic response of the scattering field to create a dynamic matching filter using the Green’s function under first-order Born approximation. The occurring air-soil interference has been removed as an unwanted reflection from the ground while keeping the signal coming from underground. Using the Born approximation assumption created an ill-posed linear system solved by the Conjugate Gradient algorithm. Simulation results are presented to validate the method.

Publisher

Engineering, Technology & Applied Science Research

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3