UAS-Borne Radar for Remote Sensing: A Review

Author:

Miccinesi LapoORCID,Beni AlessandraORCID,Pieraccini MassimilianoORCID

Abstract

Since the 1950s, radar sensors have been widely used for the monitoring of the earth’s surface. The current radars for remote sensing can be divided into two main categories: Space/aerial-borne and ground-based systems. The unmanned aerial system (UAS) could bridge the gap between these two technologies. Indeed, UAS-borne radars can perform long scans (up to 100/200 m) in a brief time (a few minutes). From the 2010s, the interest in UAS-borne radars has increased in the research community, and it has led to the development of some commercial equipment and more than 150 papers. This review aims to present a study on the state-of-the-art of UAS-borne radars and to outline the future potential of this technology. In this work, the scientific literature was categorized in terms of application, purpose of the paper, radar technology, and type of UAS. In addition, a brief review of the main national UAS regulations is presented. The review on the technological state-of-the-art shows that there is currently no standard in terms of radar technology, and that the multi-helicopter could be the most used UAS in the near future. Moreover, the UAS-borne radar can be used for several remote sensing applications: From landmine detection to smart agriculture, and from archeological survey to research and rescue applications. Finally, the UAS-borne radar appears to be a mature technology, which is almost ready for industrialization. The main developmental limit may be found in the flight regulation, which does not allow for many operations and imposes strict limits on the payload weight.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coherent Change Detection for High-Resolution Drone-Borne SAR at 24 GHz;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

2. UAS-borne CWSF SAR imaging: evaluation and compensation of Doppler effect;2023 IEEE International Radar Conference (RADAR);2023-11-06

3. SAR UAV for soil moisture estimation;2023 8th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR);2023-10-23

4. UAV-mounted Ground Penetrating Radar: an example for the stability analysis of a mountain rock debris slope;Journal of Mountain Science;2023-10

5. UAS-Based GPR System;2023 12th International Workshop on Advanced Ground Penetrating Radar (IWAGPR);2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3