Digital Image Forensics: An Improved DenseNet Architecture for Forged Image Detection

Author:

Alzahrani Ahmed

Abstract

Images sent across internet platforms are frequently subject to modifications, including simple alterations, such as compression, scaling, and filtering, which can mask possible changes. These modifications significantly limit the usefulness of digital image forensics analysis methods. As a result, precise classification of authentic and forged images becomes critical. In this study, a system for augmented image forgery detection is provided. Previous research on identifying counterfeit images revealed unexpected outcomes when using conventional feature encoding techniques and machine learning classifiers. Deep neural networks have been also utilized in these efforts, however, the gradient vanishing problem was ignored. A DenseNet model was created to tackle limitations inherent in typical Convolutional Neural Networks (CNNs), such as gradient vanishing and unnecessary layer requirements. The proposed DenseNet model architecture, which is composed of densely connected layers, is designed for precise discrimination between genuine and altered images. A dataset of forged images was implemented to compare the proposed DenseNet model to state-of-the-art deep learning methods, and the results showed that it outperformed them. The recommended enhanced DenseNet model has the ability to detect modified images with an astonishing accuracy of 92.32%.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable AI-based Framework for Efficient Detection of Spam from Text using an Enhanced Ensemble Technique;Engineering, Technology & Applied Science Research;2024-08-02

2. An Image Processing-based and Deep Learning Model to Classify Brain Cancer;Engineering, Technology & Applied Science Research;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3