An Image Processing-based and Deep Learning Model to Classify Brain Cancer

Author:

Al-Shahrani Amal,Al-Amoudi Wusaylah,Bazaraah Raghad,Al-Sharief Atheer,Farouquee Hanan

Abstract

In recent years, the prevalence of cancer has increased significantly around the world. Cancer is considered one of the most dangerous diseases in humans. Cancer screening devices, such as Magnetic Resonance Imaging (MRI), X-ray imaging, ultrasound imaging, and others, play an important role in its early detection. This study aims to facilitate cancer tumor detection on mobile phones with high accuracy in a short period of time using deep learning techniques. A brain tumor dataset was used, consisting of 4,489 images and 14 classified types, and experiments were carried out using ResNet 12, DenseNet, YOLOv8, and MobileNet to evaluate them in terms of accuracy, speed, and model size. ResNet12, DenseNet, YOLOv8, and MobileNet results indicated satisfactory accuracy ranging from 88% to 97.3%. YOLOv8 was the most suitable model, as its fastest inference time of 1.8 ms, preprocessing time of 0.1 ms, highest accuracy of 97.3%, and compact model size make it ideal for real-time mobile applications.

Publisher

Engineering, Technology & Applied Science Research

Reference26 articles.

1. "Brain Tumors and Brain Cancer." https://www.hopkinsmedicine.org/health/conditions-and-diseases/brain-tumor.

2. P. K. Mall and P. K. Singh, "BoostNet: a method to enhance the performance of deep learning model on musculoskeletal radiographs X-ray images," International Journal of System Assurance Engineering and Management, vol. 13, no. 1, pp. 658–672, Jan. 2022.

3. K. C. Kamal, Z. Yin, M. Wu, and Z. Wu, "Evaluation of deep learning-based approaches for COVID-19 classification based on chest X-ray images," Signal, Image and Video Processing, vol. 15, no. 5, pp. 959–966, Jan. 2021.

4. "Types of Deep Learning & Their Uses in Healthcare." https://healthitanalytics.com/features/types-of-deep-learning-their-uses-in-healthcare.

5. "Transfer learning." https://en.wikipedia.org/w/index.php?title=Transfer_learning.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3