Author:
Ghaly S. M. A.,Khan M. O.,El Mehdi S. O.,Al-Awad M.,Asad Ali Μ.,Al-Snaie K. A.
Abstract
A conventional temperature sensing system employs a single transducer to convert temperature into an electrical signal. Such a system suffers from the limitation of the sensing range of the sensing device thereby affecting its accuracy and its capability. Therefore to make an accurate measurement in a typically abrupt temperature varying environment, a broad range high precision sensor is required. In this paper, an attempt is made to implement a wide spectrum temperature measurement system using auto-selected multi-sensor core in LabVIEW. This multi-sensor core can be composed of a set of different sensors having different capabilities to measure different temperatures ranges. These sensors are auto-selected by the program depending on the environment. This concept may be useful for space applications or it can also be useful for the monitoring of temperature and pressure in an oil/gas transportation or supply by means of underground/sea pipeline system or in a refinery plant. Further, this may also be applied for high precision temperature sensing in magnetic resonance imaging system applications.
Publisher
Engineering, Technology & Applied Science Research
Reference18 articles.
1. A. A. Khan, M. A. Al-Turaigi, A. R. M Alamoud, “Linearized thermistor thermometer using an analog multiplier”, IEEE Transactions on Instrumentation and Measurement, Vol. 37, No. 2, pp. 322-323, 1988
2. S. Pradhan, S. Sen, “An improved lead compensation technique for three-wire resistance temperature detectors”, IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 5, pp. 903-905, 1999
3. P. R. Nagarajan, B. George, V. J. Kumar, “A linearizing digitizer for wheatstone bridge based signal conditioning of resistive sensors”, IEEE Sensors Journal, Vol. 17, No. 6, pp. 1696-1705, 2017
4. L. Smutny, “Smart Temperature Sensors for Measurement and Control”, International Scientific Conference of FME, Session 4: Automation Control and Applied Informatics, Ostrava, Poruba, 2000
5. S. M. A. Ghaly, S. S. Al-Sowayan, “A high B1 field homogeneity generation using free element elliptical four-coil system”, American Journal of Applied Sciences, Vol. 11, No. 4, pp. 534-540, 2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献