Image and Velocity Profile Reconstruction Using a Customized 8–16 Electrode Electrical Capacitance Tomography Sensor Based on LabVIEW Simulation

Author:

Ghaly Sidi M. Ahmed1,Shalaby M. Y.1,Al-Snaie Khaled1,Oraiqat Majdi1,Khan Mohammad O.1

Affiliation:

1. Department of Electrical Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, KSA

Abstract

Electrical Capacitance Tomography is a method for determining the dielectric permittivity distribution inside an object from the measurement of the external capacitances of a multi-electrode assembly. The measuring electrodes, which are metal plates, must be large enough to give a measurable change in capacitance. In this article, the performance of the ECT sensor, the sensitivity matrix, and hence the reconstructed image quality and the velocity profiles are improved. A typical customized 16–8 electrode ECT sensor is proposed, simulated, and implemented on the LabVIEW platform in contrast with a set of standard 8, 12, and 16-electrode ECT sensors. The results of these types of sensors are noted and compared to each other, focusing on the customized sensor. It is observed from the results obtained during this simulation experiment that the performance of the customized 16–8 electrode ECT sensor is comparatively better and exhibits better quality and performance with respect to its image and velocity reconstruction. The comparison of results further demonstrated that the correlation coefficient changes from 0.61 to 0.96, and the error images are within 0.3 to 0.1 for the SNRs going from 60 to 90 dB. It was also observed that the reconstructed velocity profiles are consistent with the original expected velocity profiles for the customized 8–16-electrode ECT sensor.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Reference29 articles.

1. A review of reconstruction techniques for capacitance tomography;Isaksen;Measurement Science and Technology,1996

2. Issues in electrical impedance imaging;Cheney;Computing in Science & Engineering,1995

3. Electrical impedance tomography using level set representation and total variational regularization;Chung;Journal of Computational Physics,2005

4. Image reconstruction technique of electrical capacitance tomography for low-contrast dielectrics using calderon’s method;Cao;Measurement Science and Technology,2009

5. Liquid film thickness estimation using electrical capacitance tomography;Cui;Measurement Science Review,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3