IoT Device Identification and Cybersecurity: Advancements, Challenges, and an LSTM-MLP Solution

Author:

Alshaya Shaya A.

Abstract

Over the past few years, there has been an undeniable surge in the deployment of IoT devices. However, this rapid growth has brought new challenges in cybersecurity, as unauthorized device deployment, malicious code modification, malware deployment, and vulnerability exploitation have emerged as significant issues. As a result, there is a growing need for device identification mechanisms based on behavior monitoring. To address these challenges, Machine Learning (ML) and Deep Learning (DL) techniques have been increasingly employed due to advances in the field and improved processing capabilities. However, cyber attackers have developed adversarial attacks that focus on modifying contexts and evading ML evaluations applied to IoT device identification solutions. This article highlights the importance of addressing cybersecurity challenges in the IoT landscape and proposes a hardware behavior-based individual device identification approach using an LSTM-MLP architecture. The proposed architecture was compared to the most common ML/DL classification techniques using data collected from 45 Raspberry Pi devices running identical software and showing promising results in improving device identification. The proposed LSTM-MLP method outperformed previous solutions, achieving an average increase in F1-Score of +0.97 and a minimum TPR of 0.97 for all devices.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Security Threat Exploration on Smart Living Style based on Twitter Data;Engineering, Technology & Applied Science Research;2024-08-02

2. Robust and Secure Routing Protocol Based on Group Key Management for Internet of Things Systems;Engineering, Technology & Applied Science Research;2024-06-01

3. Advancing IoT Cybersecurity: Adaptive Threat Identification with Deep Learning in Cyber-Physical Systems;Engineering, Technology & Applied Science Research;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3