Abstract
The Adiabatic Flame Temperature (AFT) in combustion represents the maximum attainable temperature at which the chemical energy in the reactant fuel is converted into sensible heat in combustion products without heat loss. AFT depends on the fuel, oxidizer, and chemical composition of the products. Computing AFT requires solving either a nonlinear equation or a larger minimization problem. This study obtained the AFTs for oxy-methane (methane and oxygen), oxy-hydrogen (hydrogen and oxygen), air-methane (methane and air), and air-hydrogen (hydrogen and air) for stoichiometric conditions. The reactant temperature was 298.15 K (25°C), and the pressure was kept constant at 1 atm. Two reaction mechanisms were attempted: a global single-step irreversible reaction for complete combustion and the GRI-Mech 3.0 elementary mechanism (53 species, 325 steps) for chemical equilibrium with its associated thermodynamic data. NASA CEARUN was the main modeling tool used. Two other tools were used for benchmarking: an Excel and a Cantera-Python implementation of GRI-Mech 3.0. The results showed that the AFTs for oxy-methane were 5,166.47 K (complete combustion) and 3,050.12 K (chemical equilibrium), and dropped to 2,326.35 K and 2,224.25 K for air-methane, respectively. The AFTs for oxy-hydrogen were 4,930.56 K (complete combustion) and 3,074.51 K (chemical equilibrium), and dropped to 2,520.33 K and 2,378.62 K for air-hydrogen, respectively. For eight combustion modeling cases, the relative deviation between the AFTs predicted by CEARUN and GRI-Mech 3.0 ranged from 0.064% to 3.503%.
Publisher
Engineering, Technology & Applied Science Research
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献