Real-Time Inspection of Fire Safety Equipment using Computer Vision and Deep Learning

Author:

Alayed AsmaaORCID,Alidrisi Rehab,Feras Ekram,Aboukozzana Shahad,Alomayri Alaa

Abstract

The number of accidental fires in buildings has been significantly increased in recent years in Saudi Arabia. Fire Safety Equipment (FSE) plays a crucial role in reducing fire risks. However, this equipment is prone to defects and requires periodic checks and maintenance. Fire safety inspectors are responsible for visual inspection of safety equipment and reporting defects. As the traditional approach of manually checking each piece of equipment can be time-consuming and inaccurate, this study aims to improve the inspection processes of safety equipment. Using computer vision and deep learning techniques, a detection model was trained to visually inspect fire extinguishers and identify defects. Fire extinguisher images were collected, annotated, and augmented to create a dataset of 7,633 images with 16,092 labeled instances. Then, experiments were carried out using YOLOv5, YOLOv7, YOLOv8, and RT-DETR. Pre-trained models were used for transfer learning. A comparative analysis was performed to evaluate these models in terms of accuracy, speed, and model size. The results of YOLOv5n, YOLOv7, YOLOv8n, YOLOv8m, and RT-DETR indicated satisfactory accuracy, ranging between 83.1% and 87.2%. YOLOv8n was chosen as the most suitable due to its fastest inference time of 2.7 ms, its highest mAP0.5 of 87.2%, and its compact model size, making it ideal for real-time mobile applications.

Publisher

Engineering, Technology & Applied Science Research

Reference37 articles.

1. "Annual Statistical Report," Civil Defense Directorate, Saudi Arabia, 2020.

2. "Why is Fire Safety Important? | Alsco." https://alsco.com/resources/why-is-fire-safety-important/.

3. "Saudi Fire Protection Code Fire Protection Requirements," Saudi Building Code National Committee, SBC 801, 2018.

4. V. Kodur, P. Kumar, and M. M. Rafi, "Fire hazard in buildings: review, assessment and strategies for improving fire safety," PSU Research Review, vol. 4, no. 1, pp. 1–23, Jan. 2019.

5. D. E. Della-Giustina, Fire Safety Management Handbook, 3rd ed. Boca Ration, FL, USA: CRC Press, 2014.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing the Quality of Ambulance Crew Work by detecting Ambulance Equipment using Computer Vision and Deep Learning;Engineering, Technology & Applied Science Research;2024-08-02

2. TQU-SLAM Benchmark Feature-based Dataset for Building Monocular VO;Engineering, Technology & Applied Science Research;2024-08-02

3. An Image Processing-based and Deep Learning Model to Classify Brain Cancer;Engineering, Technology & Applied Science Research;2024-08-02

4. Weqaa: An Intelligent Mobile Application for Real-Time Inspection of Fire Safety Equipment;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3