An Evaluation of the Performance of Lateritic Soil Stabilized with Cement and Biochars to be Used in Road Bases of Low-Volume Sealed Roads

Author:

Otieno Meshack,Gariy Zachary,Kabubo Charles

Abstract

The study investigated the effects of adding Saw Dust Ash (SDA) and Sugar Cane Bagasse Ash (SCBA) on the strength of cement with stabilized lateritic soil. The experiments carried out in both the lateritic soil and stabilized lateritic soil considered Atterberg limits, sieve/hydrometer analysis, compaction, soaked California Bearing Ratio (CBR), and Unconfined Compressive Strength (UCS) at various curing periods. Ordinary Portland Cement (OPC) was introduced into the soil with varying content (0%, 3%, 5%, 7%, and 9%) by weight of the soil sample. The results showed that CBR and UCS increased to 175.7% and 1.999 MPa, respectively, as the OPC content increased to 7%. The optimal OPC content to meet the 1.5MPa UCS requirement for road bases on low-volume sealed roads in Kenya was 7%. The next treatment involved partially replacing the OPC content with SDA and SCBA in different doses (7-0-0%, 5-1-1%, 3-2-2%, 1-3-3%, and 0-3.5-3.5%, respectively) for various curing periods. The results showed that CBR and UCS decreased as the OPC content decreased and SCBA and SDA increased. At a content of 5% OPC, 1% SDA, and 1% SCBA, UCS and CBR were 1.877 MPa and 149%, respectively, suggesting that it was the optimal dosage to meet the 1.5MPa UCS requirement for road bases on low-volume sealed roads in Kenya. The durability test indicated that the specimens treated with 5% OPC, 1% SDA, and 1% SCBA met the 80% durability index mark, as recommended for cement-stabilized soils. Previous studies used SDA and SCBA separately with cement or lime to stabilize the subgrade or subbase of roads, but this study focused on using these materials together as a partial OPC replacement to stabilize lateritic road bases for use in low-volume sealed roads. The goal was to use local agricultural and industrial waste materials in road construction and improve the strength characteristics of road bases while preserving the environment through waste utilization.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3