Friction Behavior of Anodic Oxide Layer Coating on 2017A T4 Aluminum Alloy under Severe Friction Solicitation: The Effect of Anodizing Parameters

Author:

Kchaou Mohamed

Abstract

This article aims to highlight the wear mechanisms and friction behavior of the 2017A T4 anodized aluminum alloy used for automotive and aerospace applications. The effect of the processing parameters on the durability of the anodized layer under high friction is studied. Scratch tests were carried out to study the level of the friction coefficient with the increase in the thickness of the oxide layer formed on the Al 2017 A (AU4G) substrate. The results of the scratch tests show that the variation in the anodization duration, which influences the thickness of the oxide layer, induces an increase in the coefficient of friction. Besides, the variations in friction coefficient with sliding distance are influenced by the changes in wear morphology and degree of oxidation. Treated surfaces with a thickness of 50 μm have the lowest friction coefficients and wear rates. Their improved wear resistance may be related to the increased bond strength compared to other anodized surfaces. The tribological damage was characterized by the detachment of debris, which increases with the increase of the duration of anodization. Upon sliding, its detachment leads to delamination of the underlying anodic aluminum oxides and subsequent abrasion of the aluminum substrate.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3