Methods of Distributing the IF-WS2 Modifier for Its Introduction into the Structure of the Al2O3 Aluminum Oxide Coating

Author:

Korzekwa Joanna1ORCID,Niedźwiedź Mateusz1ORCID,Dercz Grzegorz1ORCID,Cwynar Krzysztof2ORCID,Sowa Maciej3ORCID,Bara Marek1ORCID,Simka Wojciech3ORCID

Affiliation:

1. Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland

2. Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland

3. Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

The microstructures and structures of modified Al2O3/IF-WS2 coatings prepared on aluminum substrates are studied. Amorphous Al2O3 oxide coatings are obtained on EN AW 5251 aluminum alloy using the electrooxidation process. The quality of the IF-WS2 nanopowder is of great importance in the process of its introduction into the nanopores of the Al2O3 oxide coating. Commercial nanopowder tends to agglomerate, and without appropriate pretreatment, it is difficult to introduce it into the nanopores of the coating. To improve the degree of fragmentation of the IF-WS2 nanopowder, an experiment was carried out to distribute the nanopowder in the presence of strong ultrasounds, and new conditions for introducing the powder into the nanopores were used. A two-level design of experiment (DOE) was used. The SEM examination made it possible to conclude that Method A contributed to a more even distribution of nanoparticles in the microstructure of Al2O3 coatings. GIXD analyses showed the presence of WO3 derived from the IF-WS2 modifier next to crystal structures derived from aluminum and WS2. Modification of coatings using Method A resulted in surfaces with lower contact angles measured with polar liquids and higher surface free energy compared to Method B.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3