Author:
Hassan M. K.,Babiker A.,Baker M.,Hamad M.
Abstract
Application of cloud computing is rising substantially due to its capability to deliver scalable computational power. System attempts to allocate a maximum number of resources in a manner that ensures that all the service level agreements (SLAs) are maintained. Virtualization is considered as a core technology of cloud computing. Virtual machine (VM) instances allow cloud providers to utilize datacenter resources more efficiently. Moreover, by using dynamic VM consolidation using live migration, VMs can be placed according to their current resource requirements on the minimal number of physical nodes and consequently maintaining SLAs. Accordingly, non optimized and inefficient VMs consolidation may lead to performance degradation. Therefore, to ensure acceptable quality of service (QoS) and SLA, a machine learning technique with modified kernel for VMs live migrations based on adaptive prediction of utilization thresholds is presented. The efficiency of the proposed technique is validated with different workload patterns from Planet Lab servers.
Publisher
Engineering, Technology & Applied Science Research
Reference22 articles.
1. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, “Xen and the art of virtualization”, 19th ACM Symposium on Operating Systems Principles, pp 164-177, 2003
2. S. Akoush, R. Sohan, A. Rice, A. W. Moore, A. Hopper, “Predicting the Performance of Virtual Machine Migration”, IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 2010
3. C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, “Live migration of virtual machines”, 2nd Symposium on Networked Systems Design and Implementation, pp 273-286, 2005
4. A. B. Nagarajan , F. Mueller, C. Engelmann, L. Scott, “Proactive fault tolerance for HPC with Xen virtualization”, 21st Annual International Conference on Supercomputing, pp 23–32, 2007
5. R. Nathuji, K. Schwan, “Virtual power: Coordinated power management in virtualized enterprise systems”, ACM SIGOPS Operating Systems Review, Vol. 41, No. 6, pp. 265-278, 2007
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献