Abstract
Software-Defined Networks (SDNs) provide a contemporary approach to networking technology, offering a versatile and dynamically efficient network architecture for enhanced surveillance and performance. However, SDN architectures may encounter flow conflicts. These conflicts arise when modifications are made to specific flow properties, such as priority, match field, and action. Despite the existence of recommended solutions, the process of resolving conflicts in SDN continues to encounter difficulties. This study proposes an Extremely Fast Decision Tree (EFDT) classification technique to detect and categorize conflicts inside the flow table. The novelty of this method is based on the development of an accurate and effective machine-learning technique implemented on the Ryu controller plane and validated using the Mininet simulator. The effectiveness and efficiency of the proposed method were evaluated using various indicators, demonstrating superior performance in recognizing and categorizing conflict flow types in all flow sizes ranging from 10,000 to 100,000.
Publisher
Engineering, Technology & Applied Science Research