Author:
Radi Abd-Elgawad M.,Eissa Shimaa H.
Abstract
The electrochemical behavior of a hypoglycemic drug, glimepiride (GM), was studied at glassy carbon (GCE) and carbon paste (CPE) electrodes in phosphate buffer over the pH range of 2.7–11.7 using cyclic and differential pulse voltammetry. Oxidation of the drug was shown to be an irreversible and diffusion-controlled process. Using differential pulse voltammetry (DPV), the drug yielded a well-defined voltammetric peak in phosphate buffer pH 6.4 at +1.16 V and pH 7.0 at +1.07 V (vs Ag|AgCl) on glassy carbon and carbon paste electrodes, respectively. This process could be used to determine glimepiride concentrations in the range from 1.0 × 10–5 to 3.2 × 10–5 mol l–1 with a detection limit of 2.0 × 10–6 mol l–1 in case of the glassy carbon electrode and in the range of 2.0 × 10–6 to 1.5 × 10–5 mol l–1 with a detection limit of 7.5 × 10–7 mol l–1 in case of the carbon paste electrode. The method was successfully applied to the determination of the drug in a tablet dosage form. Next, the formation of an inclusion complex of glimepiride with β-cyclodextrin (β-CD) in phosphate buffer (pH 7.0):methanol (90:10 (v/v)) has been investigated by differential pulse voltammetry as well as UV spectrophotometry and its stability constant was determined by both methods to be 202.0 and 197.9 l mol–1, respectively.
Publisher
Institute of Organic Chemistry & Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献