The algorithms for the Eulerian cycle and Eulerian trail problems for a multiple graph

Author:

Smirnov Alexander V.1ORCID

Affiliation:

1. P.G. Demidov Yaroslavl State University

Abstract

In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. We set the problem of finding the eulerian walk (the cycle or the trail) in a multiple graph, which generalizes the classical problem for an ordinary graph. We formulate the necessary conditions for existence of an eulerian walk in a multiple graph and show that these conditions are not sufficient. Besides that, we show that the necessary conditions of existence of an eulerian cycle and eulerian trail are not mutually exclusive for an arbitrary multiple graph, that is why it is possible to construct a multiple graph where two types of eulerian walks exist simultaneously. Any multiple graph can be juxtaposed to the ordinary graph with quasi-vertices, which represents the structure of the initial graph in a simpler form. In particular, each eulerian walk in the multiple graph corresponds to the eulerian walk in the graph with quasi-vertices. The algorithm for getting such a graph is formulated. Also, the auxiliary problem of finding the covering trails with given endpoints in an ordinary graph is studied. Two algorithms are obtained for this problem. We elaborate the algorithm for finding the eulerian walk in a multiple graph, which has the exponential complexity. We suggest the polynomial algorithm for the special case of a multiple graph and show that the necessary conditions are sufficient for existence of an eulerian walk in this special case.

Publisher

P.G. Demidov Yaroslavl State University

Subject

General Medicine

Reference20 articles.

1. A. V. Smirnov, “The Shortest Path Problem for a Multiple Graph,” Automatic Control and Computer Sciences, vol. 52, no. 7, pp. 625–633, 2018.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. The MIT Press, McGraw-Hill Book Company, 2009.

3. C. Berge, Graphs and Hypergraphs. North-Holland Publishing Company, 1973.

4. A. Basu and R. W. Blanning, “Metagraphs in workflow support systems,” Decision Support Systems, vol. 25, no. 3, pp. 199–208, 1999.

5. A. Basu and R. W. Blanning, Metagraphs and Their Applications, vol. 15. Springer US, 2007.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some polynomial subclasses of the Eulerian walk problem for a multiple graph;Modeling and Analysis of Information Systems;2024-09-13

2. NP-completeness of the Eulerian walk problem for a multiple graph;Modeling and Analysis of Information Systems;2024-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3