Affiliation:
1. P.G. Demidov Yaroslavl State University
Abstract
In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge.
We study the problem of finding the Eulerian walk (the cycle or the trail) in a multiple graph, which generalizes the classical problem for an ordinary graph. The multiple Eulerian walk problem is NP-hard.
We prove the polynomiality of two subclasses of the multiple Eulerian walk problem and elaborate the polynomial algorithms. In the first subclass, we set a constraint on the ordinary edges reachability sets, which are the subsets of vertices joined by ordinary edges only. In the second subclass, we set a constraint on the quasi-vertices degrees in the graph with quasi-vertices. The structure of this ordinary graph reflects the structure of the multiple graph, and each quasi-vertex is determined by $k$ indices of the ordinary edges reachability sets, which are incident to some multi-edge.
Publisher
P.G. Demidov Yaroslavl State University
Reference22 articles.
1. A. V. Smirnov, “The Shortest Path Problem for a Multiple Graph,” Automatic Control and Computer Sciences, vol. 52, no. 7, pp. 625–633, 2018, doi: 10.3103/S0146411618070234.
2. V. S. Rublev and A. V. Smirnov, “Flows in Multiple Networks,” Yaroslavsky Pedagogichesky Vestnik, vol. 3, no. 2, pp. 60–68, 2011.
3. A. V. Smirnov, “The Problem of Finding the Maximum Multiple Flow in the Divisible Network and its Special Cases,” Automatic Control and Computer Sciences, vol. 50, no. 7, pp. 527–535, 2016, doi: 10.3103/S0146411616070191.
4. L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton University Press, 1962.
5. V. S. Roublev and A. V. Smirnov, “The Problem of Integer-Valued Balancing of a Three-Dimensional Matrix and Algorithms of Its Solution,” Modeling and Analysis of Information Systems, vol. 17, no. 2, pp. 72–98, 2010.