Some polynomial subclasses of the Eulerian walk problem for a multiple graph

Author:

Smirnov Alexander V.1ORCID

Affiliation:

1. P.G. Demidov Yaroslavl State University

Abstract

In this paper, we study undirected multiple graphs of any natural multiplicity $k>1$. There are edges of three types: ordinary edges, multiple edges and multi-edges. Each edge of the last two types is a union of $k$ linked edges, which connect 2 or $(k+1)$ vertices, correspondingly. The linked edges should be used simultaneously. If a vertex is incident to a multiple edge, it can be also incident to other multiple edges and it can be the common end of $k$ linked edges of some multi-edge. If a vertex is the common end of some multi-edge, it cannot be the common end of another multi-edge. We study the problem of finding the Eulerian walk (the cycle or the trail) in a multiple graph, which generalizes the classical problem for an ordinary graph. The multiple Eulerian walk problem is NP-hard. We prove the polynomiality of two subclasses of the multiple Eulerian walk problem and elaborate the polynomial algorithms. In the first subclass, we set a constraint on the ordinary edges reachability sets, which are the subsets of vertices joined by ordinary edges only. In the second subclass, we set a constraint on the quasi-vertices degrees in the graph with quasi-vertices. The structure of this ordinary graph reflects the structure of the multiple graph, and each quasi-vertex is determined by $k$ indices of the ordinary edges reachability sets, which are incident to some multi-edge.

Publisher

P.G. Demidov Yaroslavl State University

Reference22 articles.

1. A. V. Smirnov, “The Shortest Path Problem for a Multiple Graph,” Automatic Control and Computer Sciences, vol. 52, no. 7, pp. 625–633, 2018, doi: 10.3103/S0146411618070234.

2. V. S. Rublev and A. V. Smirnov, “Flows in Multiple Networks,” Yaroslavsky Pedagogichesky Vestnik, vol. 3, no. 2, pp. 60–68, 2011.

3. A. V. Smirnov, “The Problem of Finding the Maximum Multiple Flow in the Divisible Network and its Special Cases,” Automatic Control and Computer Sciences, vol. 50, no. 7, pp. 527–535, 2016, doi: 10.3103/S0146411616070191.

4. L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton University Press, 1962.

5. V. S. Roublev and A. V. Smirnov, “The Problem of Integer-Valued Balancing of a Three-Dimensional Matrix and Algorithms of Its Solution,” Modeling and Analysis of Information Systems, vol. 17, no. 2, pp. 72–98, 2010.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3