Induced Pluripotent Stem-cells Inhibit Experimental Bleomycin-induced Pulmonary Fibrosis Through Regulation of the Insulin-like Growth Factor Signaling

Author:

Bayati Paria,Taherian Marjan,Assarehzadegan Mohammad-Ali,Soleimani Mansoureh,Poormoghim Hadi,Mojtabavi Nazanin

Abstract

Idiopathic pulmonary fibrosis (IPF) is among the illnesses with a high mortality rate, yet no specific cause has been identified; as a result, successful treatment has not been achieved. Among the novel approaches for treating such hard-to-cure diseases are induced pluripotent stem cells (IPSCs). Some studies have shown these cells’ potential in treating IPF. Therefore, we aimed to investigate the impact of IPSCs on insulin-like growth factor (Igf) signaling as a major contributor to IPF pathogenesis.   C57BL/6 mice were intratracheally instilled with Bleomycin (BLM) or phosphate-buffered saline; the next day, half of the bleomycin group received IPSCs through tail vein injection. Hydroxyproline assay and histologic examinations have been performed to assess lung fibrosis. The gene expression was evaluated using specific primers for Igf-1, Igf-2, and insulin receptor substrate 1 (Irs-1) genes and SYBR green qPCR master mix. The data have been analyzed using the 2-ΔΔCT method. The mice that received Bleomycin showed histological characteristics of the fibrotic lung injury, which was significantly ameliorated after treatment with IPSCs comparable to the control group. Furthermore, gene expression analyses revealed that in the BLM group, Igf1, Igf2, and Irs1 genes were significantly upregulated, which were returned to near-normal levels after treatment with IPSCs. IPSCs could modulate the bleomycin-induced upregulation of Igf1, Igf2, and Irs1 genes. This finding reveals a new aspect of the therapeutic impact of the IPSCs on IPF, which could be translated into other fibrotic disorders.

Publisher

Knowledge E DMCC

Subject

Immunology and Allergy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3