Induced pluripotent stem cells modulate the Wnt pathway in the bleomycin-induced model of idiopathic pulmonary fibrosis

Author:

Bayati Paria,Taherian Marjan,Soleimani Mansoureh,Farajifard Hamid,Mojtabavi NazaninORCID

Abstract

Abstract Background The Wnt signaling pathway has been implicated in the pathogenesis of fibrotic disorders and malignancies. Hence, we aimed to assess the potential of the induced pluripotent stem cells (IPS) in modulating the expression of the cardinal genes of the Wnt pathway in a mouse model of idiopathic pulmonary fibrosis (IPF). Methods C57Bl/6 mice were randomly divided into three groups of Control, Bleomycin (BLM), and BLM + IPS; the BLM mice received intratracheal instillation of bleomycin, BLM + IPS mice received tail vein injection of IPS cells 48 h post instillation of the BLM; The Control group received Phosphate-buffered saline instead. After 3 weeks, the mice were sacrificed and Histologic assessments including hydroxy proline assay, Hematoxylin and Eosin, and Masson-trichrome staining were performed. The expression of the genes for Wnt, β-Catenin, Lef, Dkk1, and Bmp4 was assessed utilizing specific primers and SYBR green master mix. Results Histologic assessments revealed that the fibrotic lesions and inflammation were significantly alleviated in the BLM + IPS group. Besides, the gene expression analyses demonstrated the upregulation of Wnt, β-Catenin, and LEF along with the significant downregulation of the Bmp4 and DKK1 in response to bleomycin treatment; subsequently, it was found that the treatment of the IPF mice with IPS cells results in the downregulation of the Wnt, β-Catenin, and Lef, as well as upregulation of the Dkk1, but not the Bmp4 gene (P values < 0.05). Conclusion The current study highlights the therapeutic potential of the IPS cells on the IPF mouse model in terms of regulating the aberrant expression of the factors contributing to the Wnt signaling pathway.

Funder

Iran University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Medicine (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3