Automatic Sleep Stage Classification Using 1D Convolutional Neural Network

Author:

Salamatian Asma,Khadem Ali

Abstract

Purpose: Sleep is one of the necessities of the body, such as eating, drinking, etc., that affects different aspects of human life. Sleep monitoring and sleep stage classification play an important role in the diagnosis of sleeprelated diseases and neurological disorders. Empirically, classification of sleep stages is a time-consuming, tedious, and complex task, which heavily depends on the experience of the experts. As a result, there is a crucial need for an automatic efficient sleep staging system. Materials and Methods: This study develops a 13-layer 1D Convolutional Neural Network (CNN) using singlechannel Electroencephalogram (EEG) signal for extracting features automatically and classifying the sleep stages. To overcome the negative effect of an imbalance dataset, we have used the Synthetic Minority Oversampling Technique (SMOTE). In our study, the single-channel EEG signal is given to a 1D CNN, without any feature extraction/selection processes. This deep network can self-learn the discriminative features from the EEG signal. Results: Applying the proposed method to sleep-EDF dataset resulted in overall accuracy, sensitivity, specificity, and Precision of 94.09%, 74.73%, 96.43%, and 71.02%, respectively, for classifying five sleep stages. Using single-channel EEG and providing a network with fewer trainable parameters than most of the available deep learning-based methods are the main advantages of the proposed method. Conclusion: In this study, a 13-layer 1D CNN model was proposed for sleep stage classification. This model has an end-to-end complete architecture and does not require any separate feature extraction/selection and classification stages. Having a low number of network parameters and layers while still having high classification accuracy, is the main advantage of the proposed method over most of the previous deep learning-based approaches.

Publisher

Knowledge E

Subject

Medical Laboratory Technology,Biomedical Engineering,Radiological and Ultrasound Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Existing Methodologies, Evaluation Metrics, Research Gaps, and Future Research Trends: A Sleep Stage Classification Framework;2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS);2023-05-17

2. An Efficient Hybrid Model for Patient-Independent Seizure Prediction Using Deep Learning;Applied Sciences;2022-05-29

3. Automatic Cardiac Arrhythmia Classification Using Residual Network Combined With Long Short-Term Memory;IEEE Transactions on Instrumentation and Measurement;2022

4. Automatic classification of EEG signals via deep learning;2021 IEEE 19th International Conference on Industrial Informatics (INDIN);2021-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3