An Efficient Hybrid Model for Patient-Independent Seizure Prediction Using Deep Learning

Author:

Halawa Rowan Ihab,Youssef Sherin M.,Elagamy Mazen Nabil

Abstract

Recently, many researchers have deployed different deep learning techniques to predict epileptic seizure, using electroencephalogram signals. However, most of this research requires very large amounts of memory and complicated feature extraction algorithms. In addition, they could not precisely examine EEG signal characteristics, which led to poor prediction performance. In this research, a non-patient-specific epileptic seizure prediction approach is proposed. The proposed model integrates Wavelet-based EEG signal processing with deep learning architectures for efficient prediction of pre-ictal and inter-ictal signals. The proposed system uses different models of one-dimensional convolutional neural networks to discriminate between inter-ictal signal and pre-ictal signals in order to enhance prediction performance. Experiments have been carried out on a benchmark dataset to validate the robustness of the proposed model. The experimental results showed that the proposed approach achieved 93.4% for 16 patients and 97.87% for 6 patients. Experiments showed that the proposed model can predict epileptic seizures effectively, which can have remarkable potential in clinical applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Detection of Epilepsy using IOT and Image Processing;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

2. A Mutual Information-Based Many-Objective Optimization Method for EEG Channel Selection in the Epileptic Seizure Prediction Task;Cognitive Computation;2024-03-23

3. Advancements in Deep Learning Models for Epileptic Seizure Detection: Algorithms, Applications, and Future Perspectives;Lecture Notes in Networks and Systems;2024

4. Epileptic Seizure Detection and Prediction for Patient Support;Communications in Computer and Information Science;2024

5. Prediction and Detection of Epilepsy Seizures Using Deep Learning Based Convolutional Neural Networks Models;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3