Effect of Light-Emitting Diode (Led) Light on the Gene Expression Related With Ascorbate Biosynthesis and Metabolism in Broccoli Florets

Author:

Setiawan Chandra Kurnia,Supriyadi Supriyadi,Santoso Umar,Ma Gang,Kato Masaya

Abstract

Ascorbate is one of the most abundant soluble antioxidants in the plant. Multiple functions of ascorbate in photo protection have been proposed, including scavenging of reactive oxygen species generated by oxygen photoreduction and photorespiration. There is still unclear information relation to LED light with Ascorbate biosynthesis and metabolism, yellowing, chlorophyll content, and ethylene production in broccoli florets. The effect of light-emitting diodes (LED) light on ascorbate (AsA) biosynthesis and metabolism in broccoli (Brassica oleracea L. var. Italica) cultivar “Ryokurei” were studied using red (660 nm), blue (470 nm) and white LED lights as the light source and also no light treatment as the control. Gene expression involved in the biosynthesis and metabolism of AsA, AsA content, color, chlorophyll content and ethylene production rate on the postharvest broccoli were observed in 4 days. The result showed that after two days, red light treatment significantly (p < 0,05) delayed the decrease of ascorbate content. The result was supported by observations using Real-Time Quantitative RT-PCR showed that red light treatment can suppress mRNA level of BO-APX1, BO-APX2, and BO-sAPX on the third day. Observation of BO-GLDH mRNA level was increased in the third-day exposure of red LED light. Therefore red LED light showed up-regulated AsA biosynthesis transcriptional level. Enzymes which possibility responsible for AsA metabolism and biosynthesis in a row were Ascorbate Peroxide (APX) and L-Galactono-1,4-Lactone Dehydrogenase (GLDH). The regulation of this gene expression might contribute to the suppression of AsA reduction by red LED light treatment in broccoli. Red LED also showed suppression of yellowing and decline the chlorophyll content in postharvest broccoli florets. Keywords: ascorbate, LED; broccoli; gene expression; real-time quantitative RT-PCR.

Publisher

Knowledge E

Subject

Applied Mathematics,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3