A Hybrid Model Based on Deep Features and Ensemble Learning for the Diagnosis of COVID-19: DeepFeat-E

Author:

ÖZAYDIN Berivan1ORCID,TEKİN Ramazan1ORCID

Affiliation:

1. BATMAN ÜNİVERSİTESİ

Abstract

COVID-19, which has been declared a pandemic disease, has affected the lives of millions of people and caused a major epidemic. Despite the development of vaccines and vaccination to prevent the transmission of the disease, COVID-19 case rates fluctuate worldwide. Therefore, rapid and reliable diagnosis of COVID-19 disease is of critical importance. For this purpose, a hybrid model based on transfer learning methods and ensemble classifiers is proposed in this study. In this hybrid approach, called DeepFeat-E, the diagnosis process is performed by using deep features obtained from transfer learning models and ensemble classifiers consisting of classical machine learning methods. To test the proposed approach, a dataset of 21,165 X-ray images including 10,192 Normal, 6012 Lung Opacity, 1345 Viral Pneumonia and 3616 COVID-19 were used. With the proposed approach, the highest accuracy was achieved with the deep features of the DenseNet201 transfer learning model and the Stacking ensemble learning method. Accordingly, the test accuracy was 90.17%, 94.99% and 94.93% for four, three and two class applications, respectively. According to the results obtained in this study, it is seen that the proposed hybrid system can be used quickly and reliably in the diagnosis of COVID-19 and lower respiratory tract infections.

Publisher

Firat Universitesi

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3