Numerical Analysis of Mixed Convection Flow Past a Symmetric Cylinder with Viscous Dissipation in Viscoelastic Nanofluid

Author:

Mahat Rahimah,Shafie Sharidan,Januddi Fatihhi

Abstract

Research on the nanofluid becomes trending amongst researchers especially in the industrial and engineering field due to its important and extensive applications. Therefore, the present study aims to investigate numerically the impact of viscous dissipation conducted by sodium carboxymethyl cellulose (CMC-water) nanofluid containing copper nanoparticles at room temperature with convective boundary conditions (CBC). The Tiwari and Das model was selected in this study and the transformed boundary layer equations for momentum and energy subject to the appropriate boundary conditions were numerically solved by employing numerical scheme, namely the Keller-box method. The results were analysed in detail and presented graphically for the velocity, temperature, skin friction coefficient as well as the heat transfer coefficient. The obtained results indicated that there was no significant effect for velocity and temperature profiles when values of Eckert number increased. However, it is significant for skin friction and heat transfer coefficient profiles. In the meantime, the thermal conductivity of the fluid may increase by increasing the concentration of nanofluid.

Publisher

Akademia Baru Publishing

Subject

Fluid Flow and Transfer Processes,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3