Non-Similarity Solutions of Non-Newtonian Brinkman–Viscoelastic Fluid

Author:

Kanafiah Siti Farah Haryatie MohdORCID,Mohd Kasim Abdul Rahman Mohd,Zokri Syazwani MohdORCID,Arifin Nur Syamilah

Abstract

The exploration of heat transference in relation to fluid flow problems is important especially for non-Newtonian type of fluid. The use of the particular fluid can be found in many industrial applications such as oil and gas industries, automotives and manufacturing processes. Since the experimental works are costly and high-risk procedures, the mathematical study is proposed to counter the limitations. Therefore, this work aims to study the characteristics of a fluid that combines the properties of viscosity and elasticity, together with the porosity conditions, called the Brinkman–viscoelastic model. The flow is assumed to move over a horizontal circular cylinder (HCC) under consideration of the convective thermal boundary condition. The mathematical model is transformed to the less complex form by utilising a non-dimensionless and non-similarity variable. The resulting equations are in the partial differential equation (PDE) form. Subsequently, the equations are required to be solved by employing the Keller-box method (KBM). The solutions were conveniently evaluated by observing the plotted graphs in order to capture the propensity of the fluid’s behavior in response to the adjusting parameters. The study discovered that the viscoelastic and Brinkman variables had the impact of decreasing the fluid’s velocity and increasing the temperature distribution. Nevertheless, when mixed convection and Biot numbers increased, the velocity profile exhibited the opposite pattern. Furthermore, increasing the Biot number raises the Nusselt number while decreasing the skin friction coefficient. These numerical results are critical for assisting engineers in making heat transfer process decisions and accurately verifying experimental investigations.

Funder

Universiti Teknologi MARA

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference37 articles.

1. Effects of velocity and thermal boundary layer with sustainable thermal control across flat plates;Okpara;World Sustain. Forum 2014,2014

2. A non-Newtonian liquid sphere embedded in a polar fluid saturated porous medium: Stokes flow

3. MAGNETIC FIELD EFFECT ON NON-DARCY MIXED CONVECTION FROM A HORIZONTAL PLATE IN A NANOFLUID-SATURATED POROUS MEDIUM

4. Effect of slip and convective heating on unsteady MHD chemically reacting flow over a porous surface with suction;Malarselvi;Trends Math.,2019

5. Free convection boundary layer flow of a viscoelastic fluid in the presence of heat generation;Kasim;World Acad. Sci. Eng. Technol.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3