Two-Dimensional Mixed Convection and Radiative Al2O3-Cu/H2O Hybrid Nanofluid Flow over a Vertical Exponentially Shrinking Sheet with Partial Slip Conditions

Author:

Adnan Asghar ,Teh Yuan Ying ,Khairy Zaimi

Abstract

Hybrid nanofluid is considered a modern and improvised form of nanofluid which usually used to enhance the performance of heat transfer in fluid flow systems. Previous studies found hybrid nanofluid offered a wide range of applications and this opened up numerous new opportunities to further explore the unknown behaviour of hybrid nanofluid under different body geometries and physical parameters. This paper numerically studied a two-dimensional mixed convection and radiative Al2O3-Cu/H2O hybrid nanofluid flow over a vertical exponentially shrinking sheet with partial slip conditions. The main objective is to investigate the effect of mixed convection and radiation on the velocity and temperature profiles, as well as the effect of suction on reduced skin friction and reduced heat transfer with respect to solid volume fraction of copper, velocity, and thermal slips. Exponential similarity variables transformed the governing system of partial differential equations into a system of ordinary differential equations which is solved via MATLAB’s bvp4c solver. Outcomes showed that the value of the reduced heat transfer upsurges in the first solution but declines in the second solution when the velocity slip rises. The reduced heat transfer decreases in both dual solutions when thermal slip is enhanced. As the intensity of thermal slip increases, the reduced skin friction rises in the first solution and decreases in the second. As the mixed convection parameter increases, no obvious variation is noticed in the temperature distribution within the first solution, but increasing trend is observed within the second solution. An increment in the temperature distribution also observed within the dual solutions as the thermal radiation parameter increases. In summary, findings from this study are particularly useful to understand various behaviour of Al2O3-Cu/H2O hybrid nanofluid under the influence of mixed convection, radiation, and partial slip conditions when it flows over a vertical exponential shrinking sheet.

Publisher

Akademia Baru Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3