Wood Functional Modification Based on Deposition of Nanometer Copper Film by Magnetron Sputtering

Author:

Li Jingkui,Wang Yanan,Tian He,Qi Dawei,Wang Ruoying

Abstract

Abstract It can be helpful for selected applications to improve the functionality of wood by compounding nano-metal materials with wood, endowing the wood surface with certain physical properties, for example, metallicity, electrical conductivity, and hydrophobicity. Therefore, in this study, a thin copper film was deposited on the surface of Pinus sylvestris L. var. mongholica Litv. veneer by magnetron sputtering. The film was applied at both room temperature and 200°C to obtain nano-copper–wood composites. The physical properties of wood-based nano-metal composites were characterized. The results indicated that the wood veneer metallization had no effect on the crystallization zone of wood; there were still wood cellulose characteristic peaks, but the intensity of the diffraction peak decreased. At the same time, there were characteristic diffraction peaks of copper. The mechanical properties of the wood veneer surface changed greatly; the surface of copper-plated wood veneer had good electrical conductivity and the wettability of the wood surface transformed from hydrophilic to hydrophobic. When the base temperature was 200°C, not only was the sheet resistance of the sample with coating time of 15 minutes about 4.6 times that of the sheet resistance of the sample at room temperature, but also the quality of the copper film on the wood surface was better than that at room temperature. The copper film was mainly composed of small particles with a compact arrangement.

Publisher

Forest Products Society

Subject

Plant Science,General Materials Science,Forestry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3