Electrochemical Deposition and Etching of Quasi-Two-Dimensional Periodic Membrane Structure

Author:

Yao Binbin1,Xu Yongsheng1,Lou Benzhuo1,Fan Yinbo1,Wang Erwei1

Affiliation:

1. School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723000, China

Abstract

In this paper, two experimental procedures are reported, namely electro-deposition in the ultrathin liquid layer and chemical micro-etching. Firstly, a large area quasi-two-dimensional periodic membrane with adjustable density is deposited on a Si substrate driven by half-sinusoidal voltage, which is composed of raised ridges and a membrane between the ridges. The smaller the voltage frequency is, the larger the ridge distance is. The height of a raised ridge changes synchronously with the amplitude. The grain density distribution of membrane and raised ridge is uneven; the two structures change alternately, which is closely related to the change of growth voltage and copper ion concentration during deposition. The structural characteristics of membrane provide favorable conditions for micro-etching; stable etching speed and microscope real-time monitoring are the keys to achieve accurate etching. In the chemical micro-etching process, the membrane between ridges is removed, retaining the raised ridges, thus a large scale ordered micro-nano wires array with lateral growth was obtained. This method is simple and controllable, can be applied to a variety of substrates, and is the best choice for designing and preparing new functional materials. This experiment provides a basis for the extension of this method.

Funder

Natural Science Basic Research Program of Shaanxi Provincial Department of Science and Technology

Dr. start-up fund of Shaanxi University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3