Networks Data Transfer Classification Based On Neural Networks

Author:

Abd Ali Doaa Mohsin,Chalob Donia Fadil,Khudhair Ameer Badr

Abstract

Data transmission classification is an important issue in networks communications, since the data classification process has the ultimate impact in organizing and arranging it according to size and area to prepare it for transmission to minimize the transmission bandwidth and enhancing the bit rate. There are several methods and mechanisms for classifying the transmitted data according to the type of data and to the classification efficiency. One of the most recent classification methods is the classification of artificial neural networks (ANN). It is considered one of the most dynamic and up-to-date research in areas of application. ANN is a branch of artificial intelligence (AI). The neural network is trained by backpropagation algorithm. Various combinations of functions and their effect while utilizing ANN as a file, classifier was studied and the validity of these functions for different types of datasets was analyzed. Back propagation neural university (BPNN) supported with Levenberg Marqurdte (LM) activation function might be utilized with as a successful data classification tool with a suitable set of training and learning functions which operates, when the probability is maximum. Whenever the maximum likelihood method was compared with backpropagation neural network method, the BPNN supported with Levenberg Marqurdte (LM) activation function was further accurate than maximum likelihood method. A high predictive ability against stable and well-functioning BPNN is possible. Multilayer feed-forward neural network algorithm is also used for classification. However BPNN supported with Levenberg Marqurdte (LM) activation function proves to be more effective than other classification algorithms.

Publisher

Wasit University

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurological Disease Prediction Based on EEG Signals Using Machine Learning Approaches;Lecture Notes in Networks and Systems;2024

2. Maximizing Signal Quality for One Dimensional Cells In Mobile Communications;Wasit Journal of Computer and Mathematics Science;2023-09-30

3. A concepts and techniques related to the DC motor speed control system design: Systematic Review;Wasit Journal of Computer and Mathematics Science;2023-03-30

4. Content-based filtering algorithm in social media;Wasit Journal of Computer and Mathematics Science;2023-03-30

5. Computer Vision Using Pose Estimation;Wasit Journal of Computer and Mathematics Science;2023-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3