Computer Vision Using Pose Estimation

Author:

Bin Sulong Ghazali,M . Randles

Abstract

Pose estimation involves estimating the position and orientation of objects in a 3D space, and it has applications in areas such as robotics, augmented reality, and human-computer interaction. There are several methods for pose estimation, including model-based, feature-based, direct, hybrid, and deep learning-based methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific requirements of the application, object being estimated, and available data. Advancements in computer vision and machine learning have made it possible to achieve high accuracy and robustness in pose estimation, allowing for the development of a wide range of innovative applications. Pose estimation will continue to be an important area of research and development, and we can expect to see further improvements in the accuracy and robustness of pose estimation methods in the future.

Publisher

Wasit University

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference22 articles.

1. Tulsiani, S., Zhou, T., Efros, A. A., & Malik, J. (2015). Multi-view supervision for sin-gle-view reconstruction via differentiable ray consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2623-2631).

2. Pauwels, K., Van Hulle, M. M., & de Baets, B. (2003). Survey of computational stereo vision algorithms: An overview. Journal of Image and Vision Computing, 21(4), 285-310.

3. Zhou, X., Xu, K., & Zhu, J. Y. (2021). Deformable convolutional networks for object detection in a video. IEEE Transactions on Image Processing, 30, 1865-1877.

4. Rahmati, A., & Lu, J. (2020). Pose-estimation-free object tracking via attentive feature extraction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-tern Recognition (pp. 6910-6919).

5. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2980-2988).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3