Deep Review of Machine Learning Techniques on Detection of Drowsiness Using EEG Signal
Author:
Affiliation:
1. Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769 008, India
2. Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769 008, India
Publisher
Informa UK Limited
Subject
Electrical and Electronic Engineering,Computer Science Applications,Theoretical Computer Science
Link
https://www.tandfonline.com/doi/pdf/10.1080/03772063.2021.1913070
Reference57 articles.
1. Fatigue in transport: a review of exposure, risks, checks and controls
2. Self-Paced Dynamic Infinite Mixture Model for Fatigue Evaluation of Pilots' Brains
3. Drowsiness Detection With Electrooculography Signal Using a System Dynamics Approach
4. F. Abtahi, A. Anund, C. Fors, F. Seoane, and K. Lindecrantz. “Association of drivers’ sleepiness with heart rate variability: A pilot study with drivers on real roads,” in EMBEC & NBC 2017. Springer, pp. 149–152, Jun. 2017.
5. A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Driver fatigue detection method based on multi-feature empirical fusion model;Multimedia Tools and Applications;2024-08-29
2. TFAC-Net: A Temporal-Frequential Attentional Convolutional Network for Driver Drowsiness Recognition With Single-Channel EEG;IEEE Transactions on Intelligent Transportation Systems;2024-07
3. A pilot study on AI-driven approaches for classification of mental health disorders;Frontiers in Human Neuroscience;2024-04-10
4. Deep Learning-Based Attention Mechanism for Automatic Drowsiness Detection Using EEG Signal;IEEE Sensors Letters;2024-03
5. CogniDriveML: Detecting Drowsiness through Machine Learning with EEG Signals;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3