A pilot study on AI-driven approaches for classification of mental health disorders

Author:

Dhariwal Naman,Sengupta Nidhi,Madiajagan M.,Patro Kiran Kumar,Kumari P. Lalitha,Abdel Samee Nagwan,Tadeusiewicz Ryszard,Pławiak Paweł,Prakash Allam Jaya

Abstract

The increasing prevalence of mental disorders among youth worldwide is one of society's most pressing issues. The proposed methodology introduces an artificial intelligence-based approach for comprehending and analyzing the prevalence of neurological disorders. This work draws upon the analysis of the Cities Health Initiative dataset. It employs advanced machine learning and deep learning techniques, integrated with data science, statistics, optimization, and mathematical modeling, to correlate various lifestyle and environmental factors with the incidence of these mental disorders. In this work, a variety of machine learning and deep learning models with hyper-parameter tuning are utilized to forecast trends in the occurrence of mental disorders about lifestyle choices such as smoking and alcohol consumption, as well as environmental factors like air and noise pollution. Among these models, the convolutional neural network (CNN) architecture, termed as DNN1 in this paper, accurately predicts mental health occurrences relative to the population mean with a maximum accuracy of 99.79%. Among the machine learning models, the XGBoost technique yields an accuracy of 95.30%, with an area under the ROC curve of 0.9985, indicating robust training. The research also involves extracting feature importance scores for the XGBoost classifier, with Stroop test performance results attaining the highest importance score of 0.135. Attributes related to addiction, namely smoking and alcohol consumption, hold importance scores of 0.0273 and 0.0212, respectively. Statistical tests on the training models reveal that XGBoost performs best on the mean squared error and R-squared tests, achieving scores of 0.013356 and 0.946481, respectively. These statistical evaluations bolster the models' credibility and affirm the best-fit models' accuracy. The proposed research in the domains of mental health, addiction, and pollution stands to aid healthcare professionals in diagnosing and treating neurological disorders in both youth and adults promptly through the use of predictive models. Furthermore, it aims to provide valuable insights for policymakers in formulating new regulations on pollution and addiction.

Publisher

Frontiers Media SA

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3