Suppressing Temporal Data in Sensor Networks Using a Scheme Robust to Aberrant Readings

Author:

Reis Ilka A.12,Câmara Gilberto1,Assunção Renato2,Monteiro Antônio Miguel V.1

Affiliation:

1. National Institute for Space Research (INPE), São José dos Campos, SP, Brazil

2. Universidade Federal de Minas Gerais (UFMG), Departamento de Estatística, ICEx, Campus Pampulha, Belo Horizonte, MG, Brazil

Abstract

The main goal of a data collection protocol for sensor networks is to keep the network's database updated while saving the nodes' energy as much as possible. To achieve this goal without continuous reporting, data suppression is a key strategy. The basic idea behind data suppression schemes is to send data to the base station only when the nodes' readings are different from what both the nodes and the base station expect. Data suppression schemes can be sensitive to aberrant readings, since these outlying observations mean a change in the expected behavior for the data. Transmitting these erroneous readings is a waste of energy. In this article, we present a temporal suppression scheme that is robust to aberrant readings. We use a technique to detect outliers from a time series. Our proposal classifies the detected outliers as aberrant readings or change-points using a post-monitoring window. This idea is the basis for TS-SOUND (Temporal Suppression by Statistical OUtlier Notice and Detection). TS-SOUND detects outliers in the sequence of sensor readings and sends data to the base station only when a change-point is detected. Therefore, TS-SOUND filters aberrant readings and, even when this filter fails, TS-SOUND does not send the deviated reading to the base station. Experiments with real and simulated data have shown that the TS-SOUND scheme is more robust to aberrant readings than other temporal suppression schemes (value-based, PAQ and exponential regression). Furthermore, TS-SOUND has got suppression rates comparable or greater than the rates of the cited schemes, in addition to keeping the prediction errors at acceptable levels.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3