A Reactive Soil Moisture Sensor Network: Design and Field Evaluation

Author:

Cardell-Oliver Rachel1,Kranz Mark1,Smettem Keith2,Mayer Kevin3

Affiliation:

1. School of Computer Science & Software Engineering, The University of Western Australia

2. Centre for Water Research, The University of Western Australia

3. Faculty of Engineering and Information Technology, The Australian National University and CSIRO ICT Centre

Abstract

Wireless sensor network technology has the potential to reveal finegrained, dynamic changes in monitored variables of an outdoor landscape. But there are significant problems to be overcome in order to realize this vision in working systems. This paper describes the design and implementation of a reactive, event driven network for environmental monitoring of soil moisture and evaluates its effectiveness. A novel feature of our solution is its reactivity to the environment: when rain falls and soil moisture is changing rapidly, measurements are collected frequently, whereas during dry periods, between rainfall, measurements are collected less often. Field trials demonstrating the reactivity, robustness, and longevity of the network are presented and evaluated, and future improvements proposed.

Funder

Western Australian Water Corporation

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3