Large metropolitan water demand forecasting using DAN2, FTDNN, and KNN models: A case study of the city of Tehran, Iran
Author:
Affiliation:
1. Information Systems Department, Santa Clara University, Santa Clara, California, USA
2. Civil Engineering Department, Sharif University of Technology, Tehran, Iran
Publisher
Informa UK Limited
Subject
Water Science and Technology,Geography, Planning and Development
Link
https://www.tandfonline.com/doi/pdf/10.1080/1573062X.2016.1223858
Reference8 articles.
1. Billings, R.B. and Jones, C.V., 2008. Forecasting Urban Water Demand, 2nd ed. American Water Works Association, Denver, Co. chapter 14, 299–308.
2. Urban Water Demand Forecasting: Review of Methods and Models
3. Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling
4. A dynamic artificial neural network model for forecasting time series events
5. Urban Water Demand Forecasting with a Dynamic Artificial Neural Network Model
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China;PLOS ONE;2024-05-22
2. Aquaculture Water Quality Classification with Sparse Attention Transformers: Leveraging Water and Environmental Parameters;Proceedings of the 2024 13th International Conference on Software and Computer Applications;2024-02
3. Water consumption time series forecasting in urban centers using deep neural networks;Applied Water Science;2024-01-12
4. Studying the evolutions, differences, and water security impacts of water demands under shared socioeconomic pathways: A SEMs-bootstrap-ANN approach applied to Sichuan Province;Journal of Environmental Management;2024-01
5. Forecasting Future Water Demands for Sustainable Development in Al-Ain City, United Arab Emirates;Water;2023-10-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3